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Series Solution of Equations for Re-Entry Vehicles with Variable
Lift and Drag Coefficients

Y. C. SgEn*
Northrop Corporation, Hawthorne, Calif.

The complete two-dimensional equations of motion governing a re-entry vehicle considered
as a point mass in a nonrotating exponential atmosphere, with lift and drag coefficients given
arbitrarily as functions of both velocity and altitude, are solved by using series expansions.
The only assumption made in this solution is that the variation of altitude relative to the
earth or planetary radius is small. For constant lift and drag, the solution not only checks
with exact numerical result, shows agreement with the existing approximate solutions, but
also serves as an estimate of order of accuracy for such solutions. For variable lift and drag,
the result checks excellently with the exact numerical solution.

Nomenclature
A = reference area of the vehicle
Ch = drag coefficient of the vehicle
(653 = lift coefficient of the vehicle
G = universal gravitational constant
M = mass of the earth or planet
i = mass of the vehicle
R = radius of the earth or planet
R + 7 = radial distance from center of earth or planet to vehicle
H = time
B = atmospheric density
6 = angle between flight path and the horizontal

Introduction

ECENTLY, there have been numerous publications!—1#
concerning approximate solutions for re-entry trajector-
ies for both nonlifting and lifting vehicles with constant aero-
dynamic coefficients. As a result, considerable understand-
ing about the dynamic and thermodynamic behavior of re-
entry vehicles with. constant lift and drag coefficients has
been gained. However, for a re-entry vehicle with lift and
drag coefficients given arbitrarily as functions of velocity and
altitude, analytical solutions are meager. Wang and Chu'®
studied the case of variable lifting, where the flight path angle
is small, and the lift coefficient is represented by Cr = Crg —
¢X(Crg is the lift coefficient at entry, ¢ and n are the two
lift parameters to be varied to approximate most practical
lift programs, and X is proportional to atmospheric density).
They attacked the problem by assuming a solution for the
flight path angle 8 in a series form

0 = Za,X¢ (log X/Xg)

Although their solution suggests a way of achieving a smooth
transition from an initial plunge into a nominal glide phase,
its applicability is somewhat limited as a consequence of the
following reasons:

1) The flight path angle is small.

2) The lift coefficient assumes a special form and varies
with altitude only.

3) There is difficulty in obtaining a general solution with
respect to lift parameter n.
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4) There is inconvenience in adjusting ¢ and n to approxi-
mate a practical lift program.

5) The strange variation of drag with lift of re-entry type
vehicle may deviate considerably from the parabolic lift-
drag polar.

With a view to removing these restrictions and providing a
single solution for re-entry vehicle with lift and drag coeffi-
cients given arbitrarily as functions of both altitude and
velocity, the present analysis is made.

Equations of Motion

The use of a two-dimensional inertial coordinate system
with its origin at the center of a spherical, nonrotating earth
or planet is shown in Fig. 1. The two-dimensional equations
of motion for a lifting vehicle, considered as a point mass,
flying in the stationary earth or planetary atmosphere, can
be written as

dp/dl = —(Gm)Cp@nNpr2d + [G M/(R + 7] sinf  (la)

—5(d8/d)t = (%m)CL_(ﬁ,f)WA —
[GM/(R 4+ A2 — #2/(B + P]cosf (1b)

If the following dimensionless quantities are chosen:

r = #/R i=yT v=Ts/RY o = ARp/m
where

T = (Ry/GIy

%Eqs. (1a) and (1b) may be rewritten in the nondimensional
orm:

dv/dt = —3)Cp,r)pv? + sinb/(1 + )2 (2a)

—vdf/dt = $)Cr,r)pv? — cosf/(1 + )2 +
v2 cosd/(1 + r) (2b)

Introducing the kinematic relation
dr/dt = —v sinf (3)

into Eqgs. (2a) and (2b) to change the independent variable
from ¢ to r, the following results:

dv/dr — Cp(u,r)p?/sinf + 2/(1 + r)2 =0 (4a)

d cos@/dr + cosf/(1 + 7) —
cosf/(1 + nn? + $)Crlvr)p = 0 (4h)

Equations (4a) and (4b) are the basic unapproximated
equations governing the planar motion of a point mass ve-
hicle in the stationary atmosphere of a spherical, nonrotating
earth, or planet.

 Notice that the dimensionless v is actually the ratio between
vehicle velocity 7 and circular velocity 5., since R/T = (GM/R)/2

= Pe.
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Fig. 1 Inertial coordinate system.

However, since lifting entry occurs at low altitude, there-
fore ris very small, Eqs. (4a) and (4b) can thus be simplified as

dv?/dr — Cp(,r)pv?/sind + 2 = 0 (5a)

d cosf/dr + (1 — 1/v?) cosb + G)Crlwr)p = 0 (5b)

For exponential earth or planetary atmosphere, r is related
to pas

p = po exp(—PBRr) (6)

where pg is the dimensionless density of the earth or planetary
atmosphere at the surface of the earth or planet, ie., at
r=10.

By means of Eq. (6), Eqgs. (5a) and (5b) can be transformed,
with p as independent variable, as follows:

dv?/d logp — €]2 — Cp(v,p)pv?/sind] = 0 (7a)

d cosf/d logp — e[(1 — 1/v2) cosf + Cr(v,0)p/2] = 0 (7b)
Where e = 1/8R, Eqgs. (7a) and (7b) can also be rewritten as
(1 — cos?0) [(dv?/d logp) — 2)]* = €2[Cp(v,p)pv?]* (8a)
v2[(d cos8/d logp) — € cosf — €Cr(v,p)p/2] = —e cosf (8b)

Equations (7a) and (7b), as will be seen immediately, pro-
vide considerable information about re-entry trajectory.
However, for actual manipulation, Egs. (8a) and (8b) are
used since they are in a form more suitable for series solution.

Equations (8a) and (8b) are to be solved with the initial
conditions

(9a)
(9b)

v(p.) = ve
cost(p.) = cosl,

where (). denotes quantity at entry.

Significance of Eqs. (7a) and (7b) and Justification
for Assumptions in Existing Solutions

The following are worthy of note: :

1) Equations (7a) and (7b) are independent of A/m;
thus the solution of them, independent of A/#, may be
called similarity solution (a term that was used previously?
for trajectory caleulation).

2) For small ¢, and at high altitude, (dv?/d logp) =~ 0, (d
cosf/d logp) =~ 0. This appears to be the mathematical
justification of the simplifications used in the various existing
approximate solutions to replace cosf by cosf,, sind by siné,,
and » by v..

3) It can easily be shown that, in Eq. (7a), the gravitational
force is generally (but not always) smaller than the drag.
In Eq. (7b), the difference between gravitational and centrif-
ugal force is generally (but not always) smaller than lift.
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Thus, they can be neglected in most cases as was done in some
of the existing solutions.
4) Since €(1 — 1/v?) cosf is generally small, it is thus in-
* gensitive to the integration. This insensitivity constitutes
the basis of analysis in Ref. 17.

Series Expansion

Since € is a small parameter in the two simultaneous dif-
ferential equations [Eqs. (7a) and (7b)], this naturally sug-
gests series solution in the following form:

v = fO 4 fO 4 O 4 O 4, (10a)
cosf = RO 4 eh® 4+ &h® 4 &h® + ... (10b)

where, because of Eqgs. (9a) and (9b), the f@® and A™ satisfy
the initial conditions

O = v,

A9 (p,) = cosb.

n#Z0 (11a)
n # 0 (11b)

5 () =0
B (p) = 0

Furthermore, because of the series expansion, the aerodynamic
coefficients can be expanded as follows:

Co(,p) = Colf® + f® + &f® + ..., p]
Co(f®,p) + (0Co/30)(f®,0) [f P+ &f® +
o] 520/ (fO,0) [ef P +
Ef® 4+ F0C/%) (O, 0) [ef Y +
A R L S
Co(f®,0) + €(0Cn/00)(f0,p)f® +
2[(Cn/20) (fO,p)f® + $(0°Cn/0%) (f©,p)f V2] +
€ [(0Cn/00) (f©,p)f® + (0°C'n/0v*) (f©, 0)f Of® +
§(0%Cn/ow?)(f@,p)f V3] + ... (12)

I

Similarly,

Crv,p) = Cr(f,0) + €(0CL/ W) (fO,p)fV +
e[(0C1/a0) (fO,p)f® + 5(2*Cn/0v*) (f©,p)f V2] +
e[(0CL/20) (f,0)f® + (0°Cp/20*) (f©V,0)fVf® +
#(0*Co/0%) (f0,p)f V%] + ... (13)

Substituting Eqs. (10a, 10b, 12, and 13) into Egs. (8a) and
(8b), and equating coefficients for zeroth power of ¢, one has

df o2 \2
— hm2 =
a—nh )( dlogp) 0 (142)
dh®
02 -
1 g (14b)

which, together with the initial conditions [Eqs. (11a) and
A1) 1@ (p,) = v. and 2O (p,) = cosb., lead to zeroth order
solution:

fo =y, (15a)
A = cosfl, (15b)
The series solution will now assume the form
v =0 + efV + Y@ 4 SO (16a)
cosf = cosf. + ™™ + e + &h® ... (16b)

which, together with Eqgs. (12) and (13), are again substituted
into Eqgs. (8a) and (8b). After equating coefficients of equal
powers of € and taking account of the decelerating effect of
the drag force to determine the proper sign for the resulting
differential equations, a slight manipulation will yield the
following sequence.

- First,

—2 sinf.[v.(df®V/d logp) — 1] = Cp(v.,p) pvs*
v2[(dhV/d logp) — cosl, — Crv.,p)p/2] = —cosf, (17b)

(173)
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Second,

—C (v, p) pv.2? sind, [(df V2/d logp) + 20.(df®/d logp)] —
(cosf,/sin20,)C p(v., p) p20.h D =
C (v, p) (OC p/0) (vs,p) o2,V + 205 (v, p) p2.5f 8
(18a)

v.2[(dh®/d logp) — B — (p/2)(dC1/d0)(ve, p)f V] +
20O [(dh®/d logp) — cosb. — (p/2)C1(v.,p)] = —hD
(18b)

and so forth.

Equations (17a-18b) are first-order, linear differential
equations in the form dy/dz = ¢(z), which can be solved
by direct integration where the integration constants are
determined from Eqs. (11a) and (11b):

Fo = (%) Iog(f);) <2 Sm0>f Co(,p)dp (19a)
o = (1 — Ui> cosh, log( > n G) [7 Cvanrap 9b)
7o = = () = () S [ () evoom +
222 o) | tog( - )dp + () [0
[ZCD(ve,m + ve (ve,p)] f Co(ve,p)dp —
(220 2 frevmnl2) -

v, cosf, (o »
e [ s Cotven) [ Cutrpdde 200

B = <%><1 _ 1%)2 cosd. [log(ﬂ)]z 4
<%><1 - ;1:2> fp s f Crlv,p)dp +
)£ o ()
bOL (00.p) f Cotoun)do + <cos6 >[10g<%>]2 ~

cosf, pdp
(3 DN [ cotvanis 200

With f@©, @ f® and A® obtained as just shown, the re-
entry trajectory is thus determined.

Comparison with Existing Approximate Solutions

As the velocity of the present series solution is expressed
in a form quite different from that of the existing approximate
solutions, it is difficult to make any direct comparison between
them. However, the flight path angle of the present series
solution is in a form that can be compared with that of Refs.
13and 17.

The flight path angle in Ref. 17 can be expressed in terms
of the notation of the present paper as follows:

cosfd = cosf, + €[(1 — 1/v%) cosb(p — p.)/p +
3)Crle — p)] (21)

This agrees very well with the present series solution (for
constant Cz and Cp):

cosf = cosf, + e[(1 — 1/v.2) cosb, log(p/pe) -+
@Czlp — po)] (22)

except that the term (I — 1/v%) cosf(p — p.)/p in Eq. (21)
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isreplaced by (1 — 1/2.%) cosf. log(o/p.) in Eq. (22). Judging
from this, the solution in Ref. 17 seems to be correct to the
order 0(e?).

In Ref. 13, the flight path angle, if written in terms of the
present notation, is
cosf = cos, + e[(1 — 1/v.2) cosb, log(n/p.) +

(%)CL(P - Pe)] - 62(00508/7)62 Sinee) (01/2) X
[Cop. log(p/ps) — (0 — p)] + ... (23)

This agrees well with the present series solution (for constant

Crand Cp):
cosf = cos, + €[(1 — 1/v.2) cosb, log(p/p.) +
B0l — p)] — {[3A — 1/0.HCL —
(cosB,/v.? sinf,)C nlp. log(o/p.) —
EQ — 1/v3Cr — (cosb./v.? sind,)Cn] X
(b — p) — 31 — 1/852 + 1/v4] X
cosf,[log(p/p) 12} + ... (24)

The result of Ref. 13 appears to be accurate to the order of
0(ed).

Comparison with Exact Numerical Solution

As a final check on the validity of the present series solu-
tions, numerical examples are presented for the trajectory of
1) nonlifting vehicle with constant drag coellicient

Cp =01 A/m = 0.25
2) lifting vehicle with constant lift and drag coefficient
CrL =01 Cp = 041 A/m =1

3) lifting vehicle with lift and drag coefficients varying with
altitude alone

Cr = 0.1+ 1.29653 X 1073(p — p,) —
8.4049 X 1077(p — p.)2%

Cp = 0.4 + 0.6C? A/m =05

4) lifting vehicle with lift and drag coefficients varying
with both altitude and velocity

Cr = 0.1+ 1.29653 X 1073(p — p) —
8.4049 X 1077(p — po)* + (v — v) + (0 — v)?f

Cp = 0.4 + 0.60:2 A/m = 0.5

The results are in good agreement with the exact values from
the numerical integration, as can be seen from Tables 1-4.
Note that the velocity is not decreasing monotonously in
this case as the gravitational force is dominating in part of
the trajectory. This means that neglect of gravity term may
sometimes cause error. In all the numerical examples given
in the tables, the following constants are used:

1/8 = 24,000 ft
R = 20902 X 107 ft
po = 2.377 X 1072 slug/ft3

Conclusion

The equations of motion governing the planar entry of a
vehicle with arbitrarily variable lift and drag have been re-
duced to a dimensionless form that not only provides physical
and mathematical insight into re-entry trajectory but also
suggests an approach for analytical solution by an expansion
procedure in terms of the small parameter (1/8R).

1 It should be noted that the (' program given here may be
unrealistic because C'r. becomes prohibitively large at low altitude.
However, at the re-entry portion of the trajectory, it is reason-
able and does serve the purpose for numerical comparison be-
tween exact and series solutions.
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Table 1 Nonlifting vehicle with constant drag coefficient

Exact solution Series solution

7, ft 8, deg 7, fps 6, deg 7, fps
300,000 5 30,000 5 30,000
274,398 4.79 30,025 4.79 30,026
249,891 4.57 30,045 4.58 30,047
226,490 4.36 30,056 4.38 30,058
204,208 4.15 30,044 4.17 30,048
183,065 3.93 29,979 3.98 29,989
163,093 3.73 29,798 3.83 29,826
144,345 3.54 29,375 3.80 29,458

Table 2 Lifting vehicle with constant lift and drag
coefficient

Exact solution Series solution

7, It 6, deg 7, fps 9, deg 7, fps
300,000 5 30,000 5 30,000
250,123 4.52 29,942 4.54 29,843
206,645 3.78 29,255 3.90 29,284
176,735 2.08 26,402 2.89 26,940

Table 3 Lifting vehicle with lift and drag coefficients vary-
ing with altitude alone

Exact solution Series solution

7, it 6, deg 7, fps 8, deg 7, fps
300,000 5 30,000 5 30,000
250,006 4.55 29,997 4.56 29,998
205,475 3.94 29,661 4.02 29,676
171,641 2.47 27,903 3.13 28,179

Table 4 Lifting vehicle with lift and drag coefficients
varying with both altitude and veloeity

Exact solution Series solution

7, ft 6, deg 7, fps 6, deg 7, fps
300, 000 5 30,000 5 30,000
250,007 4.55 29,997 4.56 29,998
205,452 3.95 29,661 4.05 29,677
170,447 2.85 27,896 3.74 28,100

The method of systematic, series expansion is applied to the
full, two-dimensional, dimensionless, equations of motion.
A sequence of linear, first-order differential equations is thus
obtained which can be solved immediately by quadrature.
The resulting solution is in an analytical form that not only
agrees with the exact solution but also serves to estimate the
order of accuracy of the existing approximate solutions.
As there is practically no restriction imposed in obtaining the
solution, its applicability is therefore general within the range
of its applicability. Furthermore, as the nondimensional
equation is independent of any physical characteristics of a
vehicle, its solution has similarity properties.

However, it should be cautioned that the present series
solution, being based upon dv?/d logp = 0(¢) and d cos8/d logp
= 0(e), is not uniformly valid from entry to impact. This is
because the order of p may change from e or 1 at entry to
1/¢ at impact. Furthermore, because of the appearance
of sinf in the denominator, the present scheme fails when a
skip occurs. As a remedy for the former, another series
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expansion valid for the low altitude can be developed by
following the same concept as that for the high' altitude.
This series expansion for the low altitude, when combined
with the present solution for high altitude, may be able to
predict the complete trajectory. As a remedy for the latter,
an alternate formulation using velocity as independent vari-
able has been adopted, the result of which is reported
in a separate paper.?? The method of series expansion has
also been applied to the determination of aerodynamic control
for a re-entry vehicle. The details can be found in the fore-
mentioned separate paper.?!
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